
Supplementary Information 
for Metamers of the Ventral Stream
Jeremy Freeman and Eero P. Simoncelli

Contents

Supplementary Figure 1
Illustration of the construction of spatial pooling regions, including one-dimensional 
depictions of the separable components (in polar angle and eccentricity), and the 
contours of the full set of two-dimensional pooling regions. 

Supplementary Figure 2
Model and example stimuli for the V1 control experiment, including a diagram of the 
model, and two samples generated from the model, based on the same original 
image shown for the mid-ventral model in Figure 2.

Supplementary Methods
Additional mathematical and methodological details on the model and data analysis. 
Section 1 provides mathematical details of the mid-ventral model. Section 2 presents 
a derivation of the observer model used to analyze the psychophysical data (Figs. 3 
and 4). Section 3 describes how we analyzed physiological estimates of receptive 
field size as a function of eccentricity, and provides references for all data sets 
included in our meta-analysis (Fig. 5). Section 4 describes how the model was 
extended to color images (Fig. 7).



0 5 10 15 0 5 10 15
0

1

0

1

Scaling = 0.46

Eccentricity (degs)

Polar angle

Eccentricity (degs)

Polar angle

Fi
lte

r v
al

ue
Fi

lte
r v

al
ue

D
eg

DegDeg

Scaling = 0.87

00

0 5 10 15

0

5

10

15

0 5 10 15

a

b

c

× ×

= =

Supplementary Figure 1. Construction 
of spatial pooling regions using filters 
that are separable in log eccentricity and 
polar angle. (a) Filters have a flat top 
and raised cosine transition regions, and 
are constructed to evenly tile log eccen-
tricity, which yields filters that grow in 
size with eccentricity according to a 
fixed scaling (ratio of size to eccentricity). 
Filters are shown for two scalings, 0.46 
and 0.87. Filters are constructed to have 
approximately 50% overlap. (b)
constructed filters are spaced evenly to 
tile polar angle. Larger scalings yield 
broader polar angle filters, to ensure that 
the resulting two-dimensional spatial 
filters have a fixed ratio of width in 
eccentricity to width in polar angle (see 
Methods). (c) -
ponents are combined to obtain two-
dimensional spatial filters. Contours 
indicate the full-width half-maximum of 
each filter. Actual filters have soft edges 
and overlap by approximately 50%, as 
shown for the separable components in 

evenly, and sum to a constant.
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Supplementary Figure 2. V1 model and stimuli. (a) In each spatial pooling region, the image is repre-
sented with a bank of model V1 complex cells, varying in their preferred orientation and spatial frequency. 
Model responses are averages of the squared filter responses over the pooling regions. The model cap-
tures local spectral energy, but not local correlations across orientations and scales. (b) -
graph of the Brunnen der Lebensfreude fountain in Rostock, Germany (courtesy of Bruce Miner). (c) and 
(d)
identical to the original (panel b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images 
(Fig. 4). While fixating the center (red circle) the two images should appear nearly identical to the original 
and to each other. 
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Supplementary methods

1 Mid-ventral model responses

We provide mathematical details for computation of the second stage of model responses. The

V1 responses are based on a complex steerable pyramid, in which the image is convolved with a

bank of oriented bandpass filters, and their Hilbert transforms [13, 15]. The pyramid has a total of

sixteen subbands (four orientations at four different scales), and a lowpass residual band. We write

the nth V1 subband as xn(i, j), a two-dimensional array containing the complex-valued responses.

We also use the more compact vector notation �xn. The real part of this subband, which arises

from convolution with the symmetric filter is denoted sn(i, j), and the magnitude of the subband

(i.e., the square root of the sum of squared responses of symmetric and anti-symmetric filters) is

en(i, j).

The model responses are based on those developed in Portilla & Simoncelli (2000) for global texture

modeling, but all averages are computed over localized pooling regions. A pooling region is defined

by a weighting function whose values sum to one. In the following expressions, we consider a single

pooling region, with weights denoted w(i, j).

Simple autocorrelations are weighted spatial averages of products of the symmetric filter responses

at nearby spatial locations:

Aw(n, k, l) =
��

w(i, j) (sn(i, j)− µw(�sn))
�
w(i+ k, j + l) (sn(i+ k, j + l)− µw(�sn)) , (1)

where (k, l) specifies the spatial displacement (in horizontal and vertical directions), the summation

is over (i, j), and µw(�sn) is the weighted mean,

µw(�sn) =
�

w(i, j)sn(i, j). (2)

In our mid-ventral model, we include the autocorrelation for spatial displacements (−3 ≤ k ≤
3,−3 ≤ l ≤ 3). In the V1 model, we only include the central sample (i.e. k = l = 0), for which

Eq. (1) reduces to a weighted variance.

Complex cell autocorrelations are analogous weighted averages of products of the magnitudes:

Bw(n, k, l) =
��

w(i, j) (en(i, j)− µw(�en))
�

w(i+ k, j + l) (en(i+ k, j + l)− µw(�en)) , (3)

Again, we include displacements (−3 ≤ k ≤ 3,−3 ≤ l ≤ 3) in the mid-ventral model. But complex

cell autocorrelations are not included in the V1 model.

Cross-orientation and cross-scale correlations are computed between between magnitudes at differ-

ent orientations and scales:

Cw(n,m) =

�
w(i, j) (en(i, j)− µw(�en)) (em(i, j)− µw(�em)) , (4)
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where indices (n,m) specify two subbands arising from filters at different orientations at the same
scale, or at different orientations at adjacent scales. This yields 6 cross-orientation correlations at
each scale, and 16 cross-scale correlations for each scale.

Finally, cross-scale correlations are also computed between the complex-valued responses at one
scale, and the phase-doubled responses at a coarser scale:

Sw(n,m) =
�

w(i, j) (xn(i, j)− µw(�xn))

�
x2
m(i, j)

|xm(i, j)| − µw

�
x2
m(i, j)

|xm(i, j)|

��
, (5)

where indices (n,m) specify two subbands arising from filters at adjacent scales (with n correspond-
ing to the finer scale).

Our model also includes weighted marginal statistics (mean, variance, skew, kurtosis), computed on
the symmetric (real) filter responses. The weighted mean is given in Eq. (2). Higher-order weighted
moments of order p are,

µ(p)
w (�sn) =

�
w(i, j) (sn(i, j)− µw(�sn))

p .

From this, the skew and kurtosis are:

γw(�sn) =
µ(3)
w (�sn)

�
µ(2)
w (�sn)

�3/2

κw(�sn) =
µ(4)
w (�sn)�

µ(2)
w (�sn)

�2

2 Observer model

We derive an observer model that can be fit to the data in our metamer experiments. Subjects
viewed images that were matched for a set of model responses, within pooling regions that scaled in
size with eccentricity according to scaling s. We varied this scaling across our experimental stimuli
to obtain percent correct as a function of s. We assume the observer uses the same representation
that is used to generate the images, with (unknown) critical scaling, s0. Let �x be a vector of values
to be locally averaged (e.g., the array containing pairwise products of two orientation subbands).
Let M be a matrix whose rows contain the weighting functions (with sizes scaling according to s),
that are used to compute the local averages for the purposes of synthesis. Assume that �x and �y
have been adjusted so that M�x = M�y. Define the projection matrix P = M�(MM�)−1M , which
projects vectors into the space spanned by M .

Now let R be the matrix that the observer uses to compute averages over regions scaling with s0. We
assume the discriminability of the two stimuli depends on the sum of squared differences between
these averages. We can express the expected value of this quantity, taken over instantiations of �x
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and �y that match the same model measurements, as:

d2 = E
�
||R�x−R�y||2

�

= E
�
||R(I − P )(�x− �y) +RP (�x− �y)||2

�

= E
�
||R(I − P )(�x− �y)||2

�
,

where we use the fact that M(�x−�y) = 0, which implies (using the definition of P ) that RP (�x−�y) =
0. Assuming that �x and �y are independent, and have the same covariance matrix, C, gives:

d2 = Tr
�
E
�
R(I − P )(�x− �y)(�x− �y)�(I − P�)R���

= Tr
�
R(I − P )2C(I − P�)R��

= Tr
�
(R−RM�(MM�)−1M)2C(R� −M�(MM�)−1MR�)

�
.

Without loss of generality, we can assume that the variance along each dimension is equal, and thus
that C is a multiple of the identity matrix. Under this assumption, and after some matrix algebra,
we obtain

d2 ∝
�
Tr(RR�)− Tr

�
R�RM�(MM�)−1M

��
. (6)

This provides a generic closed-form expression for the overall error as a function of the measurement
matrices M and R. Although the assumption that the components of �x (and �y) are decorrolated
may not hold for all of the parameters of our ventral model, we find through simulations that the
resulting expression for discriminability still holds.

Finally, we wish to express this result in terms of the scaling parameters for the synthesis model
and the observer. This is easily obtained from Eq. (6) if we assume that (i) M and R each compute
local means within blocks of fixed sizes m and r, respectively, (ii) m is an integer multiple of r (iii)
both m and r divide evenly into n, the length of �x. For matrices with this structure, we can express
d2 as a function of m:

d2(m) ∝
�

n
r2

�
1− r

m

�
m > r

0 m ≤ r
(7)

This expression has a natural continuous generalization to handle smoothly overlapping averages
and non-integer ratios. The radial extent of our model pooling regions is proportional to the scaling
s, so the average region size will be proportional to s2, with a proportionality constant that depends
on the shape of the region. Replacing m with s2, and r with s20, and absorbing the factor of n/r2

into a single scale constant, gives the closed form approximation:

d2(s) ≈
�

α0(1− s20/s
2) s > s0

0 s ≤ s0
(8)

We empirically verified that this approximation holds for the smooth weighting functions used in
our model implementation. The proportionality factor, α0, is likely to differ for each measurement
in the model. If we assume that the observer performs a weighted sum of the squared errors over
the full set of measurements, then the overall error will be of the same form as that of Eq. (8).
Notice that α0 scales the magnitude of the squared difference, without affecting the point at which
the curve exceeds 0 (i.e., when s = s0). Thus, when fitting the data, the gain parameter captures
variability in overall performance across observers and presentation conditions.
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Finally, we use signal detection theory (Macmillan, 1977) to compute the probability of a correct
response Pc in the ABX task as a function of the underlying difference d2,

Pc = Φ
�
d2/

√
2
�
Φ(d2/2) + Φ

�
−d2/

√
2
�
Φ(−d2/2), (9)

where Φ is the CDF of the Normal distribution. We use the MATLAB fminsearch routine to
find the values of s0 and the gain that maximize the likelihood of the data (proportion correct
responses for each scaling) under this model, for each subject and condition. We use bootstrapping
to obtain 95% confidence intervals for the parameter estimates: we resample the individual trials
with replacement, and refit the resampled data to reestimate the parameters.

3 Physiological estimates of receptive field size

We performed a meta-analysis to estimate the relationship between physiologically measured re-
ceptive field size and eccentricity in non-human primates. Measurements of receptive field sizes
are variable across different experiments because different labs use different stimuli and mapping
procedures [14, 16, 4]. To compare our psychophysics to physiology, we considered a wide range of
data sets: four in V2 [8, 9, 3, 1], five in V1 [8, 10, 4, 7, 2], and three in V4 [9, 12, 5]. Two of these
data sets are from owl monkey [1, 2], one from capuchin [10], and the rest are from macaque.

For each visual area, we combined data across experiments and estimated variability by pooling
the raw data (rather than the fits), matching sample sizes, and resampling multiple times to obtain
a 95% confidence interval on the slopes. Specifically, we determined the minimum number of cells
across the data sets, and on each iteration of a bootstrap, resampled that number with replacement
from each data set, and reestimated the slope of size versus eccentricity from the pooled data. We
fit the data with a two-parameter hinged line, with a constant minimum size over some small range
of eccentricities, followed by a linear relationship with some slope. For consistency, we used this
“hinged line” model to estimate all slopes, but we obtained similar results when using a linear
fit through 0. We also considered a straight line with variable intercept and slope [6], but the
hinged line fits the data well (error was comparable for the two fits) and is better matched to the
parameterization of our model. Variability across data sets tended to be largest at far eccentricities,
and given that our visual stimuli only extended to 12.25 deg, we restricted our analysis of the
physiology data to this range. In some of the cited studies [8, 10, 9, 7, 3, 5], rectangular receptive
field sizes were mapped using a minimum response field procedure. To convert these numbers to
diameters of circular receptive fields, and partially compensate for the bias toward smaller values
inherent in this mapping technique [16, 4], we took the average of the diameter associated with
the corners and sides of the squares (i.e., we multiplied the reported diameters by (1 +

√
2)/2).

Small modifications to any of these aspects of the data analysis did not qualitatively change the
comparison between our psychophysics and the physiology.

4 Color

Applying our model to color images (e.g., Fig. 7) requires a minor modification. We initially
tried applying the existing model directly to each color channel of the image (red, green, and
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blue), and then combining the channels into a synthesized color image. However, that procedure
yields large color artifacts because the synthesis fails to respect pixel-domain correlations across
the color channels. As a solution to this problem, we first use PCA to rotate the color space of
the original image into a new three-dimensional space in which the pixels across color channels are
maximally decorrelated [11]. We then apply the model as described, independently to each of the
three PCA component channels. After each iteration of the synthesis, the PCA rotation is undone,
the resulting three synthetic color channels are recombined, and the pixel statistics computed from
the original color channels are imposed. The color space is then rotated again, and the procedure
is repeated.
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